Symbol |
Description |
Location |
\mathbb{Z} |
(ring of) integers |
Definition 1.0.1 |
\mathbb{N} |
counting numbers (starting at zero) |
Definition 1.0.1 |
a\mid b |
a is a divisor of b |
Definition 1.2.5 |
\gcd(a,b) |
greatest common divisor of a and b |
Definition 2.2.1 |
\lfloor x\rfloor |
greatest integer (floor) function |
Definition 3.3.3 |
a \equiv b \text{ (mod }n) |
a is congruent to b modulo n |
Definition 4.1.1 |
[a] |
the equivalence class of a modulo some fixed n |
Definition 4.4.1 |
a^{-1} |
multiplicative inverse of a number modulo some fixed n |
Definition 5.3.4 |
\prod_{i=1}^n p_i |
product of unspecified, possible identical, primes |
Theorem 6.3.2 |
\prod p |
short form for product of primes |
Example 6.3.3 |
\prod q |
alternate short form for product of primes |
Example 6.3.3 |
\prod_{i=1}^n p_i^{e_i} |
product of unspecified distinct prime power |
Example 6.3.4 |
\prod p^e |
short form for product of prime powers |
Example 6.3.4 |
p^k\parallel n |
for p prime, p^k\mid n but p^{k+1} does not divide n |
Definition 6.4.5 |
n! |
n factorial |
Definition 6.4.6 |
\mathbb{Z}_n |
(ring of) integers modulo n |
Definition 8.1.1 |
A\setminus \{a\} |
the set of all elements in A except a\in A |
Example 8.3.4 |
|G| |
order of a group G |
Definition 8.3.8 |
|x| |
order of a group element x\in G |
Definition 8.3.10 |
U_n |
group of units modulo n |
Definition 9.1.2 |
\phi(n) |
order of the group of units of n (Euler function) |
Definition 9.2.1 |
\varphi(n) |
alternate notation for Euler \phi function |
Definition 9.2.1 |
F_n |
Fermat number 2^{2^n}+1 |
Definition 12.1.1 |
M_n |
Mersenne number 2^n-1 |
Definition 12.1.6 |
r_2(n) |
number of different ways to write n as a sum of two squares |
Exercise 13.7.7 |
\mathbb{Z}[i] |
Gaussian integers \{a+bi\mid a,b\in\mathbb{Z}\} |
Definition 14.1.2 |
\mathbb{C} |
complex numbers |
Definition 14.1.2 |
r_k(n) |
number of different ways to write n as a sum of k perfect squares |
Example 14.2.3 |
QR |
abbreviation for ‘quadratic residue’ |
Definition 16.3.1 |
Q_p |
group of quadratic residues of p |
Definition 16.4.2 |
\left(\frac{a}{p}\right) |
Legendre symbol, for p an odd prime |
Definition 16.6.1 |
aE |
multiples of positive even numbers less than p by a |
Definition 17.2.2 |
\overline{aE} |
set of nonnegative remainders of elements of aE modulo p |
Definition 17.2.2 |
r_{a,e} |
remainder modulo p of the element ae of aE |
Definition 17.2.2 |
\left(\frac{a}{n}\right) |
Jacobi symbol, n odd |
Definition 17.4.9 |
R |
sum \sum_{\text{even }e,\; 0<e<p}\left\lfloor\frac{qe}{p}\right\rfloor in proof of quadratic reciprocity |
Paragraph |
\mu |
sum \sum_{f=1}^{(p-1)/2}\left\lfloor\frac{qf}{p}\right\rfloor in proof of quadratic reciprocity |
Paragraph |
r(n) |
alternate notation for r_2(n) |
Definition 18.2.1 |
\sigma_k(n) |
sum of kth powers of divisors of n |
Definition 19.1.1 |
\tau(n) |
number of (positive) divisors of n |
Remark 19.1.2 |
\sigma(n) |
sum of (positive) divisors of n |
Remark 19.1.2 |
u(n) |
unit function |
Definition 19.2.9 |
N(n) |
identity function |
Definition 19.2.9 |
\sigma^{-1}(n) |
abundancy index of n |
Fact 19.4.11 |
O(g(x)) |
‘Big Oh’ notation that a function is less in absolute value than Cg(x)\text{,} for some constant C |
Definition 20.1.2 |
\log(n) |
natural (base e) logarithm |
Definition 20.3.3 |
\gamma |
Euler-Mascheroni gamma constant, limit of difference between the harmonic series and natural logarithm |
Definition 20.3.10 |
\Gamma |
Gamma function factorial extension |
Remark 20.3.11 |
\pi(x) |
prime counting function |
Definition 21.0.1 |
\phi(n,a) |
number of integers coprime to first a primes |
Definition 21.1.7 |
p_a |
the ath prime |
Definition 21.1.7 |
Li(x) |
logarithmic integral \int_2^x \frac{dt}{\log(t)} |
Definition 21.2.2 |
\Theta(x) |
Chebyshev theta function |
Definition 21.4.3 |
a(n) |
prime number indicator function |
Definition 21.4.7 |
p\# |
primorial (product of primes up to p) |
Definition 22.2.7 |
C_2 |
twin prime constant |
Remark 22.3.6 |
\mu(n) |
Moebius function of n |
Definition 23.1.1 |
f \star g |
Dirichlet product of arithmetic functions f and g |
Definition 23.2.3 |
I(n) |
Dirichlet product identity function |
Definition 23.3.1 |
\omega(n) |
number of unique prime divisors of n |
Definition 23.3.3 |
\nu(n) |
alternate notation for \omega(n) |
Definition 23.3.3 |
\lambda(n) |
Liouville's function |
Definition 23.3.4 |
\zeta(s) |
Riemann zeta function |
Definition 24.2.1 |
J(x) |
auxiliary function in Riemann explicit formula |
Definition 25.4.2 |